Subgroup ($H$) information
| Description: | $C_{44}:C_{10}^2$ |
| Order: | \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Generators: |
$\left(\begin{array}{rrrr}
3 & 7 & 2 & 8 \\
10 & 5 & 1 & 2 \\
8 & 1 & 3 & 4 \\
7 & 8 & 1 & 5
\end{array}\right), \left(\begin{array}{rrrr}
2 & 2 & 4 & 0 \\
4 & 9 & 0 & 7 \\
1 & 0 & 9 & 2 \\
0 & 10 & 4 & 2
\end{array}\right), \left(\begin{array}{rrrr}
10 & 10 & 4 & 5 \\
7 & 4 & 0 & 4 \\
3 & 8 & 7 & 1 \\
3 & 3 & 4 & 1
\end{array}\right), \left(\begin{array}{rrrr}
4 & 10 & 5 & 3 \\
3 & 5 & 8 & 5 \\
7 & 8 & 9 & 1 \\
5 & 7 & 8 & 10
\end{array}\right), \left(\begin{array}{rrrr}
9 & 0 & 0 & 0 \\
0 & 9 & 0 & 0 \\
0 & 0 & 9 & 0 \\
0 & 0 & 0 & 9
\end{array}\right), \left(\begin{array}{rrrr}
6 & 10 & 5 & 0 \\
0 & 5 & 0 & 6 \\
2 & 0 & 5 & 10 \\
0 & 9 & 0 & 6
\end{array}\right), \left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 10 & 0 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 0 & 10
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $\GL(2,11):D_4$ |
| Order: | \(105600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2.C_2^5.\PSL(2,11).C_2$ |
| $\operatorname{Aut}(H)$ | $C_{110}.C_{10}.C_2^5$ |
| $W$ | $D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $12$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |