Properties

Label 105600.a.24.A
Order $ 2^{4} \cdot 5^{2} \cdot 11 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{44}:C_{10}^2$
Order: \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 3 & 7 & 2 & 8 \\ 10 & 5 & 1 & 2 \\ 8 & 1 & 3 & 4 \\ 7 & 8 & 1 & 5 \end{array}\right), \left(\begin{array}{rrrr} 2 & 2 & 4 & 0 \\ 4 & 9 & 0 & 7 \\ 1 & 0 & 9 & 2 \\ 0 & 10 & 4 & 2 \end{array}\right), \left(\begin{array}{rrrr} 10 & 10 & 4 & 5 \\ 7 & 4 & 0 & 4 \\ 3 & 8 & 7 & 1 \\ 3 & 3 & 4 & 1 \end{array}\right), \left(\begin{array}{rrrr} 4 & 10 & 5 & 3 \\ 3 & 5 & 8 & 5 \\ 7 & 8 & 9 & 1 \\ 5 & 7 & 8 & 10 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 6 & 10 & 5 & 0 \\ 0 & 5 & 0 & 6 \\ 2 & 0 & 5 & 10 \\ 0 & 9 & 0 & 6 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $\GL(2,11):D_4$
Order: \(105600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_2^5.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_{110}.C_{10}.C_2^5$
$W$$D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{88}:C_{10}^2$
Normal closure:$\GL(2,11):C_2^2$
Core:$C_5\times D_4$
Minimal over-subgroups:$\GL(2,11):C_2^2$$C_{88}:C_{10}^2$
Maximal under-subgroups:$C_{22}:C_{10}^2$$C_{22}.C_{10}^2$$C_{220}:C_{10}$$C_{20}\times F_{11}$$C_{220}:C_{10}$$C_{20}:D_{22}$$D_4\times F_{11}$$D_4\times F_{11}$$C_4:C_{10}^2$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed