Properties

Label 105600.a.110.S
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 2 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{40}.S_4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 6 & 1 & 8 & 1 \\ 7 & 7 & 4 & 8 \\ 5 & 1 & 8 & 10 \\ 2 & 5 & 4 & 9 \end{array}\right), \left(\begin{array}{rrrr} 3 & 7 & 9 & 3 \\ 1 & 8 & 10 & 9 \\ 6 & 9 & 3 & 4 \\ 8 & 6 & 10 & 8 \end{array}\right), \left(\begin{array}{rrrr} 0 & 7 & 5 & 9 \\ 6 & 9 & 0 & 5 \\ 1 & 10 & 10 & 4 \\ 1 & 1 & 5 & 8 \end{array}\right), \left(\begin{array}{rrrr} 10 & 10 & 4 & 5 \\ 7 & 4 & 0 & 4 \\ 3 & 8 & 7 & 1 \\ 3 & 3 & 4 & 1 \end{array}\right), \left(\begin{array}{rrrr} 6 & 8 & 8 & 7 \\ 7 & 8 & 4 & 8 \\ 1 & 3 & 3 & 3 \\ 1 & 1 & 4 & 5 \end{array}\right), \left(\begin{array}{rrrr} 6 & 6 & 9 & 0 \\ 2 & 0 & 2 & 9 \\ 4 & 7 & 0 & 5 \\ 10 & 4 & 9 & 5 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $\GL(2,11):D_4$
Order: \(105600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_2^5.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_4\times \GL(2,\mathbb{Z}/4):C_2^2$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$W$$D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_5\times \GL(2,3):D_4$
Normal closure:$C_{40}.\PGL(2,11)$
Core:$C_{40}$
Minimal over-subgroups:$C_{40}.\PGL(2,11)$$C_5\times \GL(2,3):D_4$
Maximal under-subgroups:$\GL(2,3):C_{10}$$C_{20}.S_4$$C_{40}.A_4$$C_{40}.D_4$$C_{120}:C_2$$C_8.S_4$

Other information

Number of subgroups in this autjugacy class$55$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed