Properties

Label 1056.95.22.a1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{24}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $b, c^{132}, c^{33}, c^{176}, c^{66}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_{22}:C_{24}$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{11}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_5$, of order \(5\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}:C_5.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{264}$
Normalizer:$D_{22}:C_{24}$
Complements:$D_{11}$ $D_{11}$
Minimal over-subgroups:$C_2\times C_{264}$$C_2^2:C_{24}$
Maximal under-subgroups:$C_2\times C_{12}$$C_{24}$$C_2\times C_8$

Other information

Möbius function$11$
Projective image$D_{22}$