Subgroup ($H$) information
| Description: | $C_{33}:Q_8$ |
| Order: | \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \) |
| Generators: |
$ad^{11}, d^{22}, b^{2}d^{22}, b^{3}c, d^{4}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $D_{12}:D_{22}$ |
| Order: | \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \) |
| Exponent: | \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{33}\times A_4).C_5.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_{11}:(C_2^2\times C_{10}\times S_3)$ |
| $\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $W$ | $S_3\times D_{11}$, of order \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \) |
Related subgroups
| Centralizer: | $Q_8$ | ||||
| Normalizer: | $D_{12}:D_{22}$ | ||||
| Complements: | $C_2^2$ | ||||
| Minimal over-subgroups: | $C_{12}.D_{22}$ | ||||
| Maximal under-subgroups: | $C_3:C_{44}$ | $C_{11}:C_{12}$ | $C_{33}:C_4$ | $C_{11}:Q_8$ | $C_3:Q_8$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $2$ |
| Projective image | $D_6\times D_{22}$ |