Properties

Label 1056.940.12.k1
Order $ 2^{3} \cdot 11 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{44}$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $ac, d^{22}, d^{4}, b^{3}d^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{12}:D_{22}$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{33}\times A_4).C_5.C_2^5$
$\operatorname{Aut}(H)$ $D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2\times D_{22}$, of order \(88\)\(\medspace = 2^{3} \cdot 11 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_4:D_{22}$
Normal closure:$D_{132}$
Core:$C_{44}$
Minimal over-subgroups:$D_{132}$$C_2\times D_{44}$$D_4\times D_{11}$$D_{44}:C_2$
Maximal under-subgroups:$C_{44}$$D_{22}$$D_4$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$-2$
Projective image$D_6\times D_{22}$