Properties

Label 1056.916.44.b1
Order $ 2^{3} \cdot 3 $
Index $ 2^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{12}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{99}, d^{88}, d^{66}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_{12}\times D_{22}$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{22}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times C_{66}).C_5.C_2^6$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10560\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{12}\times D_{22}$
Normalizer:$D_{12}\times D_{22}$
Complements:$D_{22}$
Minimal over-subgroups:$C_2\times C_{132}$$C_2\times D_{12}$$C_2^2\times C_{12}$$C_2\times D_{12}$
Maximal under-subgroups:$C_2\times C_6$$C_{12}$$C_2\times C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-22$
Projective image$S_3\times D_{22}$