Properties

Label 1056.91.44.b1.b1
Order $ 2^{3} \cdot 3 $
Index $ 2^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{24}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a^{2}b^{33}, b^{176}, b^{66}, b^{132}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{264}:C_4$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{11}:C_4$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Automorphism Group: $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times C_{11}:C_5).C_2^5$
$\operatorname{Aut}(H)$ $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{264}$
Normalizer:$C_{264}:C_4$
Complements:$C_{11}:C_4$ $C_{11}:C_4$
Minimal over-subgroups:$C_{264}$$C_2\times C_{24}$
Maximal under-subgroups:$C_{12}$$C_8$
Autjugate subgroups:1056.91.44.b1.a1

Other information

Möbius function$0$
Projective image$C_{22}:C_4$