Properties

Label 1056.91.33.a1.a1
Order $ 2^{5} $
Index $ 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8:C_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(33\)\(\medspace = 3 \cdot 11 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b^{33}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{264}:C_4$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times C_{11}:C_5).C_2^5$
$\operatorname{Aut}(H)$ $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(S)$$C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{12}$
Normalizer:$C_8:C_{12}$
Normal closure:$C_{88}:C_4$
Core:$C_2\times C_8$
Minimal over-subgroups:$C_{88}:C_4$$C_8:C_{12}$
Maximal under-subgroups:$C_2\times C_8$$C_4^2$$C_2\times C_8$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$1$
Projective image$C_3\times D_{22}$