Properties

Label 1056.91.12.d1.a1
Order $ 2^{3} \cdot 11 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{88}$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Generators: $b^{33}, b^{66}, b^{132}, b^{24}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{264}:C_4$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times C_{11}:C_5).C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times C_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(S)$$C_2^2\times C_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(176\)\(\medspace = 2^{4} \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{264}$
Normalizer:$C_{264}:C_4$
Complements:$C_{12}$ $C_{12}$
Minimal over-subgroups:$C_{264}$$C_2\times C_{88}$
Maximal under-subgroups:$C_{44}$$C_8$
Autjugate subgroups:1056.91.12.d1.b1

Other information

Möbius function$0$
Projective image$C_{22}:C_{12}$