Subgroup ($H$) information
| Description: | $C_4:C_4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Index: | \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$b, c^{99}$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $D_{44}:C_{12}$ |
| Order: | \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \) |
| Exponent: | \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_3\times D_{11}$ |
| Order: | \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \) |
| Exponent: | \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \) |
| Automorphism Group: | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) |
| Outer Automorphisms: | $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_4\times C_{11}:C_5).C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \) |
| $W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
| Möbius function | $-11$ |
| Projective image | $C_{33}:D_4$ |