Properties

Label 1056.234.2.f1.a1
Order $ 2^{4} \cdot 3 \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{33}:\SD_{16}$
Order: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Index: \(2\)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Generators: $ac^{3}, c^{24}, c^{198}, c^{132}, bc^{253}, c^{176}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{24}:D_{22}$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_{66}.C_{10}.C_2^4$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(10560\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{11}\times D_{12}$, of order \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{24}:D_{22}$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_{24}:D_{22}$
Maximal under-subgroups:$D_{132}$$C_{33}:Q_8$$C_{11}:C_{24}$$Q_8:D_{11}$$C_{24}:C_2$

Other information

Möbius function$-1$
Projective image$D_{11}\times D_{12}$