Properties

Label 1056.193.8.e1.a1
Order $ 2^{2} \cdot 3 \cdot 11 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{132}$
Order: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Generators: $a, c^{6}, b^{4}, c^{44}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{132}.D_4$
Order: \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^6$
$\operatorname{Aut}(H)$ $C_2^2\times C_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(S)$$C_2^2\times C_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{132}$
Normalizer:$Q_8\times C_{66}$
Normal closure:$Q_8\times C_{33}$
Core:$C_{66}$
Minimal over-subgroups:$Q_8\times C_{33}$$C_2\times C_{132}$$Q_8\times C_{33}$
Maximal under-subgroups:$C_{66}$$C_{44}$$C_{12}$
Autjugate subgroups:1056.193.8.e1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{66}.D_4$