Subgroup ($H$) information
| Description: | $C_{11}:C_4$ | 
| Order: | \(44\)\(\medspace = 2^{2} \cdot 11 \) | 
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Exponent: | \(44\)\(\medspace = 2^{2} \cdot 11 \) | 
| Generators: | 
		
    $ab, c^{3}, b^{8}$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_{33}:Q_{32}$ | 
| Order: | \(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \) | 
| Exponent: | \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{44}.(C_2^4\times C_{20})$ | 
| $\operatorname{Aut}(H)$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) | 
| $\operatorname{res}(S)$ | $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) | 
| $W$ | $D_{22}$, of order \(44\)\(\medspace = 2^{2} \cdot 11 \) | 
Related subgroups
| Centralizer: | $C_6$ | |
| Normalizer: | $C_{33}:Q_8$ | |
| Normal closure: | $C_{11}:Q_{16}$ | |
| Core: | $C_{22}$ | |
| Minimal over-subgroups: | $C_{11}:C_{12}$ | $C_{11}:Q_8$ | 
| Maximal under-subgroups: | $C_{22}$ | $C_4$ | 
Other information
| Number of subgroups in this conjugacy class | $4$ | 
| Möbius function | $0$ | 
| Projective image | $C_{33}:D_8$ |