Properties

Label 1050.33.70.a1.f1
Order $ 3 \cdot 5 $
Index $ 2 \cdot 5 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}$
Order: \(15\)\(\medspace = 3 \cdot 5 \)
Index: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $c^{70}, b$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{15}:D_{35}$
Order: \(1050\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $D_{35}$
Order: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Automorphism Group: $F_5\times F_7$, of order \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Outer Automorphisms: $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_5^2:C_4.S_5\times F_7$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(21000\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{3} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_5\times C_{105}$
Normalizer:$C_{15}:D_{35}$
Complements:$D_{35}$ $D_{35}$ $D_{35}$ $D_{35}$ $D_{35}$
Minimal over-subgroups:$C_{105}$$C_5\times C_{15}$$C_3\times D_5$
Maximal under-subgroups:$C_5$$C_3$
Autjugate subgroups:1050.33.70.a1.a11050.33.70.a1.b11050.33.70.a1.c11050.33.70.a1.d11050.33.70.a1.e1

Other information

Möbius function$-35$
Projective image$C_5:D_{35}$