Properties

Label 1050.33.525.a1.a1
Order $ 2 $
Index $ 3 \cdot 5^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(525\)\(\medspace = 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(2\)
Generators: $a$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{15}:D_{35}$
Order: \(1050\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_5^2:C_4.S_5\times F_7$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6$
Normal closure:$C_5:D_{35}$
Core:$C_1$
Minimal over-subgroups:$D_7$$D_5$$D_5$$D_5$$D_5$$D_5$$D_5$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$175$
Möbius function$5$
Projective image$C_{15}:D_{35}$