Properties

Label 1050.33.210.a1.a1
Order $ 5 $
Index $ 2 \cdot 3 \cdot 5 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(5\)
Generators: $c^{63}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{15}:D_{35}$
Order: \(1050\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_3\times D_{35}$
Order: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Automorphism Group: $D_{70}:C_{12}$, of order \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Outer Automorphisms: $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_5^2:C_4.S_5\times F_7$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(42000\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{3} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_5\times C_{105}$
Normalizer:$C_{15}:D_{35}$
Complements:$C_3\times D_{35}$ $C_3\times D_{35}$ $C_3\times D_{35}$ $C_3\times D_{35}$ $C_3\times D_{35}$
Minimal over-subgroups:$C_{35}$$C_5^2$$C_{15}$$D_5$
Maximal under-subgroups:$C_1$
Autjugate subgroups:1050.33.210.a1.b11050.33.210.a1.c11050.33.210.a1.d11050.33.210.a1.e11050.33.210.a1.f1

Other information

Möbius function$35$
Projective image$C_{15}:D_{35}$