Subgroup ($H$) information
Description: | $C_3^4$ |
Order: | \(81\)\(\medspace = 3^{4} \) |
Index: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Exponent: | \(3\) |
Generators: |
$\langle(2,10,14)(3,11,13)(4,17,8)(5,12,16), (1,18,9)(2,10,14)(3,11,13)(4,8,17)(5,16,12)(6,15,7), (19,23,22)(20,24,21), (20,24,21)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
Description: | $C_3^7.(S_3\times D_4)$ |
Order: | \(104976\)\(\medspace = 2^{4} \cdot 3^{8} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $C_3\wr S_3\times D_4$ |
Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Automorphism Group: | $(C_6\times \He_3).C_2^5$ |
Outer Automorphisms: | $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^5.C_6^3.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_2.\PSL(4,3).C_2$ |
$W$ | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Centralizer: | $C_3^7$ |
Normalizer: | $C_3^7.(S_3\times D_4)$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_3^7.(S_3\times D_4)$ |