Properties

Label 104976.gf.1296.C
Order $ 3^{4} $
Index $ 2^{4} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(3\)
Generators: $c^{2}efg^{2}, d^{2}efg^{2}, efg, fg$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_3^6.(C_6\times S_4)$
Order: \(104976\)\(\medspace = 2^{4} \cdot 3^{8} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_6^2.S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.(D_6\times S_4)$, of order \(209952\)\(\medspace = 2^{5} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ $C_2.\PSL(4,3).C_2$
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_3^7$
Normalizer:$C_3^6.(C_6\times S_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^6.(C_6\times S_4)$