Properties

Label 10368.hv.4.a1
Order $ 2^{5} \cdot 3^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: not computed
Generators: $b^{18}, f^{3}, c^{2}, c^{3}df^{3}, b^{16}c^{3}de, b^{12}, ef^{3}, de, f^{2}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, and metabelian (hence solvable). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_6^3.(C_2\times S_4)$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times C_6^2).C_3^3.C_2^5$
$\operatorname{Aut}(H)$ not computed
$W$$C_2^4:S_3^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_6^3.(C_2\times S_4)$
Minimal over-subgroups:$C_2\times C_2^4.C_3:D_9:C_3$$(C_2^2\times C_6^2):C_{36}$$C_6^3.S_4$
Maximal under-subgroups:$(C_2^2\times C_6^2):C_9$$C_2^2\times C_6^3$$C_3\times C_2^4:C_{18}$$C_3\times C_2^4:C_{18}$$C_6^2:C_{18}$$C_6^2:C_{18}$$C_6^2:C_{18}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$(C_2^2\times C_6^2):D_{18}$