Properties

Label 10368.ca.288.d1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{5} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(10,17)(11,15)(12,16)(13,14), (2,8,3)(4,9,6), (1,7,5)(4,6,9), (13,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Ambient group ($G$) information

Description: $(C_2\times C_6^3):S_4$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3.(C_2^3\times S_4)$, of order \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6^3$
Normalizer:$C_6^3:D_6$
Normal closure:$C_2\times C_6^3$
Core:$C_2$
Minimal over-subgroups:$C_3\times C_6^2$$C_2^2\times \He_3$$C_{18}:C_6$$C_6\times D_6$$C_2\times C_6^2$
Maximal under-subgroups:$C_3\times C_6$$C_3\times C_6$$C_2\times C_6$$C_2\times C_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6^3:S_4$