Properties

Label 102852965376.y.5878656._.B
Order $ 2^{3} \cdot 3^{7} $
Index $ 2^{7} \cdot 3^{8} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^7:C_2^3$
Order: \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
Index: \(5878656\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(16,18,17)(37,38,39), (13,15,14)(34,36,35), (4,6,5)(13,15,14)(16,17,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_3^{14}.C_2^4.C_2.\PSL(2,7)$
Order: \(102852965376\)\(\medspace = 2^{10} \cdot 3^{15} \cdot 7 \)
Exponent: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_3^7.C_2^4:\GL(3,2)$
Order: \(5878656\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Automorphism Group: $C_3^7.C_2^4:\GL(3,2)$, of order \(5878656\)\(\medspace = 2^{7} \cdot 3^{8} \cdot 7 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is nonabelian and nonsolvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(205705930752\)\(\medspace = 2^{11} \cdot 3^{15} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_3^7.(C_2^7.\GL(3,2))$, of order \(47029248\)\(\medspace = 2^{10} \cdot 3^{8} \cdot 7 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed