Properties

Label 1024.ob.2.e1
Order $ 2^{9} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(2\)
Exponent: not computed
Generators: $\left(\begin{array}{rr} 1 & 16 \\ 16 & 25 \end{array}\right), \left(\begin{array}{rr} 1 & 2 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 31 & 16 \\ 16 & 31 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 17 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: not computed
Derived length: not computed

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2^3\times D_{16}:C_4$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^6\times C_4).C_2^6.C_2^6.C_2^6.\PSL(2,7)$
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^4\times C_8$
Normalizer:$C_2^3\times D_{16}:C_4$
Complements:$C_2$
Minimal over-subgroups:$C_2^3\times D_{16}:C_4$
Maximal under-subgroups:$C_2^3.\OD_{32}$$C_2^3\times C_4\times C_8$$C_2^4\times C_{16}$$C_2^4\times C_{16}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed