Subgroup ($H$) information
Description: | $C_2\times D_8:C_8$ |
Order: | \(256\)\(\medspace = 2^{8} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Generators: |
$c, a^{2}b^{3}c^{2}d^{7}, b^{2}c^{6}d^{5}$
|
Nilpotency class: | $4$ |
Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_4:D_8.D_8$ |
Order: | \(1024\)\(\medspace = 2^{10} \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $7$ |
Derived length: | $3$ |
The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2\times C_4:D_4).C_2^6.C_2$ |
$\operatorname{Aut}(H)$ | $C_2^2.C_2^6.C_2^3$ |
$\operatorname{res}(S)$ | $(C_2\times C_4) . C_2^6$, of order \(512\)\(\medspace = 2^{9} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $D_4:D_4$, of order \(64\)\(\medspace = 2^{6} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_2^3.C_2\wr C_4$ |