Properties

Label 1024.dii.4.f1.a1
Order $ 2^{8} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_8:C_8$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $c, a^{2}b^{3}c^{2}d^{7}, b^{2}c^{6}d^{5}$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4:D_8.D_8$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$7$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_4:D_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^2.C_2^6.C_2^3$
$\operatorname{res}(S)$$(C_2\times C_4) . C_2^6$, of order \(512\)\(\medspace = 2^{9} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_4:D_4$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$(C_2\times C_4\times C_8).C_2^3$
Normal closure:$(C_2\times C_4\times C_8).C_2^3$
Core:$C_2^3.C_4^2$
Minimal over-subgroups:$(C_2\times C_4\times C_8).C_2^3$
Maximal under-subgroups:$C_2^3.C_4^2$$C_4^2.C_2^3$$C_2^3.\OD_{16}$$D_8:C_8$$D_8:C_8$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_2^3.C_2\wr C_4$