Properties

Label 1024.dih.8.c1.a1
Order $ 2^{7} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a^{2}, b^{2}c, cd^{6}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4^2.C_2\wr C_4$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$7$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^3.C_2^4.C_2^5$
$\operatorname{Aut}(H)$ $(D_4\times C_2^4).D_4^2$, of order \(8192\)\(\medspace = 2^{13} \)
$\card{W}$\(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_4^2.C_2\wr C_4$
Minimal over-subgroups:$(C_2\times C_8^2):C_2$$\OD_{32}:D_4$$C_4^2.\OD_{16}$
Maximal under-subgroups:$C_2\times C_4\times C_8$$C_4:\OD_{16}$$C_2^3.Q_8$

Other information

Möbius function$0$
Projective image not computed