Properties

Label 1024.dih.16.n1.a1
Order $ 2^{6} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{32}:C_2$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a, b^{4}c^{2}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4^2.C_2\wr C_4$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$7$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^3.C_2^4.C_2^5$
$\operatorname{Aut}(H)$ $C_2^3.C_2^4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{W}$\(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_4^2.C_8$
Normal closure:$C_4^2.C_2^2:C_8$
Core:$C_2^2\times C_4$
Minimal over-subgroups:$C_4^2.C_8$
Maximal under-subgroups:$C_2\times \OD_{16}$$\OD_{32}$

Other information

Number of subgroups in this conjugacy class$8$
Möbius function$0$
Projective image not computed