Properties

Label 1024.dih.16.i1.a2
Order $ 2^{6} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_8$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a^{2}b^{7}c, b^{4}d, b^{4}c^{3}d^{6}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4^2.C_2\wr C_4$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$7$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^3.C_2^4.C_2^5$
$\operatorname{Aut}(H)$ $C_2^6.(D_4\times S_4)$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_4^2.D_4$
Normal closure:$C_8^2:C_2^2$
Core:$C_2^3$
Minimal over-subgroups:$C_4^2.D_4$
Maximal under-subgroups:$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times C_8$$C_2\times D_8$$C_2\times D_8$$C_2\times D_8$$C_2\times D_8$$C_2\times D_8$$C_2\times D_8$$C_2\times D_8$$C_2\times D_8$
Autjugate subgroups:1024.dih.16.i1.a1

Other information

Number of subgroups in this conjugacy class$8$
Möbius function$0$
Projective image not computed