Properties

Label 1024.dhl.256.a1.a1
Order $ 2^{2} $
Index $ 2^{8} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(2\)
Generators: $\langle(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(13,14)(15,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $(D_4\times C_2^3).Q_{16}$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$7$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Quotient group ($Q$) structure

Description: $C_2^4.Q_{16}$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^4.C_2^5.C_2$
Outer Automorphisms: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $5$
Derived length: $3$

The quotient is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5:C_4.D_4^2$, of order \(8192\)\(\medspace = 2^{13} \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(4096\)\(\medspace = 2^{12} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^5.C_4^2$
Normalizer:$(D_4\times C_2^3).Q_{16}$
Minimal over-subgroups:$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$
Maximal under-subgroups:$C_2$$C_2$

Other information

Möbius function$0$
Projective image$(C_2^4:C_4) . (C_2\times C_4)$