Properties

Label 1024.ddn.64.BA
Order $ 2^{4} $
Index $ 2^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(2\)
Generators: $\langle(5,6)(7,8)(9,10)(11,12), (5,9)(6,10)(7,12)(8,11), (1,3)(2,4)(5,7)(6,8)(9,12)(10,11)(13,16)(14,15), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $(C_2\times D_4^2):D_4$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.C_2\wr D_4$, of order \(65536\)\(\medspace = 2^{16} \)
$\operatorname{Aut}(H)$ $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$D_4\times C_2^4$
Normalizer:$C_2^5.C_2^4$
Normal closure:$C_2^5$
Core:$C_2^3$
Minimal over-subgroups:$C_2^5$$C_2^2\times D_4$$C_2^2\wr C_2$$C_2^5$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\wr C_2$$C_2^2\wr C_2$$C_2^2\wr C_2$$C_2^2\times D_4$$C_2^3:C_4$$C_2^3\times C_4$$C_2^3:C_4$$C_2^3:C_4$$C_2^3:C_4$$C_2^5$$C_2^5$$C_2^2\times D_4$
Maximal under-subgroups:$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed