Properties

Label 1024.ddn.2.E
Order $ 2^{9} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(2\)
Exponent: not computed
Generators: $\langle(5,7)(6,8)(9,11)(10,12)(13,14)(15,16), (5,6)(7,8)(9,10)(11,12), (5,6)(7,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: not computed
Derived length: not computed

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $(C_2\times D_4^2):D_4$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.C_2\wr D_4$, of order \(65536\)\(\medspace = 2^{16} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(512\)\(\medspace = 2^{9} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2\times D_4^2):D_4$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$(C_2\times D_4^2):D_4$
Maximal under-subgroups:$D_4^2:C_2^2$$C_2^4.C_2^4$$C_4^2.(C_2^2\times C_4)$$C_2^5.D_4$$C_2^5.D_4$$C_2^4.(C_2\times D_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed