Properties

Label 1024.ddn.16.BP
Order $ 2^{6} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:C_2^2$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(5,7)(6,8)(9,11)(10,12)(13,14)(15,16), (5,6)(7,8)(9,10)(11,12), (1,3)(2,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2\times D_4^2):D_4$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Quotient group ($Q$) structure

Description: $C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.C_2\wr D_4$, of order \(65536\)\(\medspace = 2^{16} \)
$\operatorname{Aut}(H)$ $C_2^6.D_4^2$, of order \(4096\)\(\medspace = 2^{12} \)
$\card{W}$\(256\)\(\medspace = 2^{8} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_2\times D_4^2):D_4$
Complements:$C_2\times D_4$
Minimal over-subgroups:$C_4^2.C_2^3$$D_4^2:C_2$$C_4^2:C_2^3$$C_4^2:D_4$
Maximal under-subgroups:$C_2^2\times D_4$$C_4^2:C_2$$C_2^3:C_4$$C_4\times D_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed