Properties

Label 1024.ddn.128.N
Order $ 2^{3} $
Index $ 2^{7} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(128\)\(\medspace = 2^{7} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(5,9,6,10)(7,12,8,11)(13,14)(15,16), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $(C_2\times D_4^2):D_4$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.C_2\wr D_4$, of order \(65536\)\(\medspace = 2^{16} \)
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$D_4^2:C_2^2$
Normalizer:$C_2^5.C_2^4$
Normal closure:$C_4^2$
Core:$C_2^2$
Minimal over-subgroups:$C_4^2$$C_2^2\times C_4$$C_2\times D_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$C_2^2\times C_4$$C_2\times D_4$$C_2^2\times C_4$$C_2\times D_4$$C_2^2\times C_4$$C_4^2$$C_4:C_4$$C_4^2$$C_4^2$$C_4:C_4$$C_2\times Q_8$$C_4:C_4$$C_2\times Q_8$$C_4:C_4$$C_4^2$$C_4:C_4$$C_4:C_4$$C_4^2$$C_4^2$
Maximal under-subgroups:$C_2^2$$C_4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed