Properties

Label 1024.dco.32.a1.a1
Order $ 2^{5} $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times C_8$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 16 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 253 & 0 \\ 0 & 64 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 256 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 241 \end{array}\right), \left(\begin{array}{rr} 256 & 0 \\ 0 & 256 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_8.D_{64}$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(128\)\(\medspace = 2^{7} \)
Nilpotency class:$7$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $D_{16}$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Automorphism Group: $D_{16}:C_4$, of order \(128\)\(\medspace = 2^{7} \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $4$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{32}.C_{32}.C_2^4$
$\operatorname{Aut}(H)$ $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1024\)\(\medspace = 2^{10} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4\times C_{128}$
Normalizer:$C_8.D_{64}$
Minimal over-subgroups:$C_4\times C_{16}$$D_8:C_4$$C_8.C_8$
Maximal under-subgroups:$C_4^2$$C_2\times C_8$$C_2\times C_8$

Other information

Möbius function$0$
Projective image$D_{64}$