Properties

Label 1020.29.17.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times A_4$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(17\)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a, b^{5}c^{17}, c^{17}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_4\times C_{85}$
Order: \(1020\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 17 \)
Exponent: \(510\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{17}$
Order: \(17\)
Exponent: \(17\)
Automorphism Group: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times C_{16}\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{85}$
Normalizer:$A_4\times C_{85}$
Complements:$C_{17}$
Minimal over-subgroups:$A_4\times C_{85}$
Maximal under-subgroups:$C_2\times C_{10}$$C_{15}$$A_4$

Other information

Möbius function$-1$
Projective image$A_4\times C_{17}$