Properties

Label 101606400.f.5040._.A
Order $ 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 $
Index $ 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_8$
Order: \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Index: \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\langle(8,15)(9,11)(10,12)(13,14), (9,15,14,11,10)\rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is characteristic (hence normal), nonabelian, and simple (hence nonsolvable, perfect, quasisimple, and almost simple). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $A_7.S_8$
Order: \(101606400\)\(\medspace = 2^{10} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $S_7$
Order: \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Automorphism Group: $S_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is nonabelian, almost simple, nonsolvable, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_7\times S_8$, of order \(203212800\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $S_8$, of order \(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed