Subgroup ($H$) information
| Description: | $C_3:C_4$ | 
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Index: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | 
		
    $ac, c^{2}, b^{14}$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $D_6.D_{42}$ | 
| Order: | \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_6\times C_2^2\times S_3\times F_7$ | 
| $\operatorname{Aut}(H)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
Related subgroups
| Centralizer: | $D_4$ | ||||
| Normalizer: | $D_4:S_3$ | ||||
| Normal closure: | $C_6.D_{21}$ | ||||
| Core: | $C_6$ | ||||
| Minimal over-subgroups: | $C_{21}:C_4$ | $C_3^2:C_4$ | $C_6:C_4$ | $C_6:C_4$ | $C_4\times S_3$ | 
| Maximal under-subgroups: | $C_6$ | $C_4$ | 
Other information
| Number of subgroups in this conjugacy class | $21$ | 
| Möbius function | $2$ | 
| Projective image | $S_3\times D_{42}$ |