Properties

Label 1008.787.6.f1.a1
Order $ 2^{3} \cdot 3 \cdot 7 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{42}:C_4$
Order: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $ac, c^{2}, b^{14}, b^{21}, b^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_6.D_{42}$
Order: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times C_2^2\times S_3\times F_7$
$\operatorname{Aut}(H)$ $S_3\times D_4\times F_7$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_2\times D_6\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{42}$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_4:D_{21}$
Normal closure:$C_6.D_{42}$
Core:$C_2\times C_{42}$
Minimal over-subgroups:$C_6.D_{42}$$D_4:D_{21}$
Maximal under-subgroups:$C_2\times C_{42}$$C_{21}:C_4$$C_{21}:C_4$$C_{14}:C_4$$C_6:C_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$S_3\times D_{42}$