Properties

Label 1008.785.8.c1.d1
Order $ 2 \cdot 3^{2} \cdot 7 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{21}$
Order: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $b^{3}, c^{14}, c^{6}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_{42}.D_6$
Order: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}.C_6^2.C_2^6$
$\operatorname{Aut}(H)$ $D_6\times F_7$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$D_6\times F_7$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$D_{42}$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$D_{42}.D_6$
Complements:$C_2\times C_4$ $C_2\times C_4$ $C_2\times C_4$ $C_2\times C_4$
Minimal over-subgroups:$C_3\times D_{42}$$C_3\times D_{42}$$C_3\times D_{42}$
Maximal under-subgroups:$C_3\times C_{21}$$D_{21}$$C_3\times D_7$$C_3\times S_3$
Autjugate subgroups:1008.785.8.c1.a11008.785.8.c1.b11008.785.8.c1.c1

Other information

Möbius function$0$
Projective image$D_{42}.D_6$