Properties

Label 1008.785.2.c1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.D_{42}$
Order: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Index: \(2\)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $ab, c^{6}, a^{2}, b^{2}, c^{21}, c^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{42}.D_6$
Order: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}.C_6^2.C_2^6$
$\operatorname{Aut}(H)$ $\PSU(3,2).C_{42}.C_6.C_2^3$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(12096\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_3\times D_{21}$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_{42}.D_6$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$D_{42}.D_6$
Maximal under-subgroups:$C_6\times C_{42}$$C_6.D_{21}$$C_6.D_{21}$$C_{42}:C_4$$C_{42}:C_4$$C_{42}:C_4$$C_6.D_6$

Other information

Möbius function$-1$
Projective image$S_3\times D_{21}$