Properties

Label 1008.644.3.b1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{28}:C_6$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(3\)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a^{3}, c^{4}, c^{7}, a^{2}b^{2}c^{14}, b^{3}, c^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{28}.C_6^2$
Order: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{21}\times A_4).C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times S_4\times F_7$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_2\times S_4\times F_7$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{28}.C_6^2$
Complements:$C_3$ $C_3$
Minimal over-subgroups:$C_{28}.C_6^2$
Maximal under-subgroups:$C_4\times F_7$$C_{28}:C_6$$C_{28}.C_6$$D_{28}:C_2$$D_4:C_6$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$-1$
Projective image$C_{14}:C_6^2$