Properties

Label 1008.644.18.c1
Order $ 2^{3} \cdot 7 $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times Q_8$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $b^{3}c^{14}, c^{4}, c^{14}, c^{7}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{28}.C_6^2$
Order: \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{21}\times A_4).C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_6\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$W$$C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_{42}$
Normalizer:$C_{28}.C_6^2$
Complements:$C_3\times C_6$
Minimal over-subgroups:$Q_8\times C_{21}$$C_{28}.C_6$$D_{28}:C_2$
Maximal under-subgroups:$C_{28}$$Q_8$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-3$
Projective image$C_{14}:C_6^2$