Subgroup ($H$) information
| Description: | $C_3^2$ |
| Order: | \(9\)\(\medspace = 3^{2} \) |
| Index: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Exponent: | \(3\) |
| Generators: |
$a^{2}, b^{2}c^{14}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_{28}.C_6^2$ |
| Order: | \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{21}\times A_4).C_6.C_2^3$ |
| $\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\operatorname{res}(S)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_4.C_6^2$ | ||
| Normalizer: | $C_4.C_6^2$ | ||
| Normal closure: | $C_{21}:C_3$ | ||
| Core: | $C_3$ | ||
| Minimal over-subgroups: | $C_{21}:C_3$ | $C_3\times C_6$ | $C_3\times C_6$ |
| Maximal under-subgroups: | $C_3$ | $C_3$ |
Other information
| Number of subgroups in this autjugacy class | $7$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $D_{28}:C_6$ |