Properties

Label 10000.em.4.c1
Order $ 2^{2} \cdot 5^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2500\)\(\medspace = 2^{2} \cdot 5^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: not computed
Generators: $abc^{4}de^{2}, d^{2}, c^{2}, e, c^{5}, b^{2}e$ Copy content Toggle raw display
Derived length: not computed

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $D_5^4$
Order: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:C_4\wr S_4$, of order \(3840000\)\(\medspace = 2^{11} \cdot 3 \cdot 5^{4} \)
$\operatorname{Aut}(H)$ not computed
$W$$D_{10}^2$, of order \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_5^2$
Normalizer:$D_5^4$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$D_5\times C_5:D_5\times D_5$$C_5\times D_5^3$
Maximal under-subgroups:$D_5\times C_5^3$$C_5^2\wr C_2$$C_5\times D_5^2$$D_{10}\times C_5^2$$C_5\times D_5^2$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$6$
Möbius function$2$
Projective image$D_5^4$