Properties

Label 10000.em.20.g1
Order $ 2^{2} \cdot 5^{3} $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_5^2$
Order: \(500\)\(\medspace = 2^{2} \cdot 5^{3} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $acd, e, c^{2}, b^{5}cd^{4}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_5^4$
Order: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:C_4\wr S_4$, of order \(3840000\)\(\medspace = 2^{11} \cdot 3 \cdot 5^{4} \)
$\operatorname{Aut}(H)$ $C_4\times F_5\wr C_2$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \)
$W$$D_5\times D_{10}$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_2\times D_5^3$
Normal closure:$C_5\times D_5\times C_5:D_5$
Core:$D_5\times C_5^2$
Minimal over-subgroups:$C_5\times D_5\times C_5:D_5$$D_5^3$$D_5^3$$C_{10}\times D_5^2$
Maximal under-subgroups:$D_5\times C_5^2$$D_5\times C_5^2$$C_5^2:C_{10}$$C_5\times D_{10}$$C_5\times D_{10}$$D_5^2$

Other information

Number of subgroups in this autjugacy class$120$
Number of conjugacy classes in this autjugacy class$24$
Möbius function$-2$
Projective image$D_5^4$