Properties

Label ab/2.43740
Order \( 2^{3} \cdot 3^{7} \cdot 5 \)
Exponent \( 2^{2} \cdot 3^{7} \cdot 5 \)
Abelian yes
$\card{\Aut(G)}$ \( 2^{6} \cdot 3^{6} \)
Trans deg. $87480$
Rank $2$

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_{2} \times C_{43740}$
Order: \(87480\)\(\medspace = 2^{3} \cdot 3^{7} \cdot 5 \)
Exponent: \(43740\)\(\medspace = 2^{2} \cdot 3^{7} \cdot 5 \)
Automorphism group:Group of order 46656
Nilpotency class:$1$
Derived length:$1$

This group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group). Whether it is metacyclic or rational has not been computed.

Group statistics

Order 1 2 3 4 5 6 9 10 12 15 18 20 27 30 36 45 54 60 81 90 108 135 162 180 243 270 324 405 486 540 729 810 972 1215 1458 1620 2187 2430 2916 3645 4374 4860 7290 8748 10935 14580 21870 43740
Elements 1 3 2 4 4 6 6 12 8 8 18 16 18 24 24 24 54 32 54 72 72 72 162 96 162 216 216 216 486 288 486 648 648 648 1458 864 1458 1944 1944 1944 4374 2592 5832 5832 5832 7776 17496 23328 87480
Conjugacy classes   1 3 2 4 4 6 6 12 8 8 18 16 18 24 24 24 54 32 54 72 72 72 162 96 162 216 216 216 486 288 486 648 648 648 1458 864 1458 1944 1944 1944 4374 2592 5832 5832 5832 7776 17496 23328 87480
Divisions data not computed
Autjugacy classes data not computed

Dimension 1
Irr. complex chars.   87480 87480

Constructions

Rank: $2$
Inequivalent generating pairs: not computed

Homology

Primary decomposition: $C_{2} \times C_{4} \times C_{2187} \times C_{5}$

Subgroups

Center: $Z \simeq$ $C_{2} \times C_{43740}$ $G/Z \simeq$ $C_1$
Commutator: $G' \simeq$ $C_1$ $G/G' \simeq$ $C_{2} \times C_{43740}$
Frattini: $\Phi \simeq$ $C_{1458}$ $G/\Phi \simeq$ $C_2\times C_{30}$
Fitting: $\operatorname{Fit} \simeq$ $C_{2} \times C_{43740}$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_{2} \times C_{43740}$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2\times C_{30}$ $G/S \simeq$ $C_{1458}$
2-Sylow subgroup: $P_{2} \simeq$ $C_2\times C_4$
3-Sylow subgroup: $P_{3} \simeq$ $C_{2187}$
5-Sylow subgroup: $P_{5} \simeq$ $C_5$