Properties

Label ab/2.4.392
Order \( 2^{6} \cdot 7^{2} \)
Exponent \( 2^{3} \cdot 7^{2} \)
Abelian yes
$\card{\Aut(G)}$ \( 2^{12} \cdot 3 \cdot 7 \)
Trans deg. $3136$
Rank $3$

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_{2} \times C_{4} \times C_{392}$
Order: \(3136\)\(\medspace = 2^{6} \cdot 7^{2} \)
Exponent: \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)
Automorphism group:Group of order 86016
Nilpotency class:$1$
Derived length:$1$

This group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary). Whether it is metacyclic or rational has not been computed.

Group statistics

Order 1 2 4 7 8 14 28 49 56 98 196 392
Elements 1 7 24 6 32 42 144 42 192 294 1008 1344 3136
Conjugacy classes   1 7 24 6 32 42 144 42 192 294 1008 1344 3136
Divisions data not computed
Autjugacy classes data not computed

Dimension 1
Irr. complex chars.   3136 3136

Constructions

Rank: $3$
Inequivalent generating triples: not computed

Homology

Primary decomposition: $C_{2} \times C_{4} \times C_{8} \times C_{49}$

Subgroups

Center: $Z \simeq$ $C_{2} \times C_{4} \times C_{392}$ $G/Z \simeq$ $C_1$
Commutator: $G' \simeq$ $C_1$ $G/G' \simeq$ $C_{2} \times C_{4} \times C_{392}$
Frattini: $\Phi \simeq$ $C_2\times C_{28}$ $G/\Phi \simeq$ $C_2^2\times C_{14}$
Fitting: $\operatorname{Fit} \simeq$ $C_{2} \times C_{4} \times C_{392}$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_{2} \times C_{4} \times C_{392}$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2^2\times C_{14}$ $G/S \simeq$ $C_2\times C_{28}$
2-Sylow subgroup: $P_{2} \simeq$ $C_2\times C_4\times C_8$
7-Sylow subgroup: $P_{7} \simeq$ $C_{49}$