Properties

Label ab/2.3420
Order \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 19 \)
Exponent \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 19 \)
Abelian yes
$\card{\Aut(G)}$ \( 2^{7} \cdot 3^{3} \)
Trans deg. $6840$
Rank $2$

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_{2} \times C_{3420}$
Order: \(6840\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 19 \)
Exponent: \(3420\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \cdot 19 \)
Automorphism group:Group of order 3456
Nilpotency class:$1$
Derived length:$1$

This group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group). Whether it is metacyclic or rational has not been computed.

Group statistics

Order 1 2 3 4 5 6 9 10 12 15 18 19 20 30 36 38 45 57 60 76 90 95 114 171 180 190 228 285 342 380 570 684 855 1140 1710 3420
Elements 1 3 2 4 4 6 6 12 8 8 18 18 16 24 24 54 24 36 32 72 72 72 108 108 96 216 144 144 324 288 432 432 432 576 1296 1728 6840
Conjugacy classes   1 3 2 4 4 6 6 12 8 8 18 18 16 24 24 54 24 36 32 72 72 72 108 108 96 216 144 144 324 288 432 432 432 576 1296 1728 6840
Divisions data not computed
Autjugacy classes data not computed

Dimension 1
Irr. complex chars.   6840 6840

Constructions

Rank: $2$
Inequivalent generating pairs: not computed

Homology

Primary decomposition: $C_{2} \times C_{4} \times C_{9} \times C_{5} \times C_{19}$

Subgroups

Center: $Z \simeq$ $C_{2} \times C_{3420}$ $G/Z \simeq$ $C_1$
Commutator: $G' \simeq$ $C_1$ $G/G' \simeq$ $C_{2} \times C_{3420}$
Frattini: $\Phi \simeq$ $C_6$ $G/\Phi \simeq$ $C_2\times C_{570}$
Fitting: $\operatorname{Fit} \simeq$ $C_{2} \times C_{3420}$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_{2} \times C_{3420}$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2\times C_{570}$ $G/S \simeq$ $C_6$
2-Sylow subgroup: $P_{2} \simeq$ $C_2\times C_4$
3-Sylow subgroup: $P_{3} \simeq$ $C_9$
5-Sylow subgroup: $P_{5} \simeq$ $C_5$
19-Sylow subgroup: $P_{19} \simeq$ $C_{19}$