Properties

Label ab/2.2.2.27360
Order \( 2^{8} \cdot 3^{2} \cdot 5 \cdot 19 \)
Exponent \( 2^{5} \cdot 3^{2} \cdot 5 \cdot 19 \)
Abelian yes
$\card{\Aut(G)}$ \( 2^{17} \cdot 3^{4} \cdot 7 \)
Trans deg. $218880$
Rank $4$

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_{2}^{3} \times C_{27360}$
Order: \(218880\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 19 \)
Exponent: \(27360\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 19 \)
Automorphism group:Group of order 74317824
Nilpotency class:$1$
Derived length:$1$

This group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary). Whether it is metacyclic or rational has not been computed.

Group statistics

Order 1 2 3 4 5 6 8 9 10 12 15 16 18 19 20 24 30 32 36 38 40 45 48 57 60 72 76 80 90 95 96 114 120 144 152 160 171 180 190 228 240 285 288 304 342 360 380 456 480 570 608 684 720 760 855 912 1140 1368 1440 1520 1710 1824 2280 2736 3040 3420 4560 5472 6840 9120 13680 27360
Elements 1 15 2 16 4 30 32 6 60 32 8 64 90 18 64 64 120 128 96 270 128 24 128 36 128 192 288 256 360 72 256 540 256 384 576 512 108 384 1080 576 512 144 768 1152 1620 768 1152 1152 1024 2160 2304 1728 1536 2304 432 2304 2304 3456 3072 4608 6480 4608 4608 6912 9216 6912 9216 13824 13824 18432 27648 55296 218880
Conjugacy classes   1 15 2 16 4 30 32 6 60 32 8 64 90 18 64 64 120 128 96 270 128 24 128 36 128 192 288 256 360 72 256 540 256 384 576 512 108 384 1080 576 512 144 768 1152 1620 768 1152 1152 1024 2160 2304 1728 1536 2304 432 2304 2304 3456 3072 4608 6480 4608 4608 6912 9216 6912 9216 13824 13824 18432 27648 55296 218880
Divisions data not computed
Autjugacy classes data not computed

Dimension 1
Irr. complex chars.   218880 218880

Constructions

Rank: $4$
Inequivalent generating quadruples: not computed

Homology

Primary decomposition: $C_{2}^{3} \times C_{32} \times C_{9} \times C_{5} \times C_{19}$

Subgroups

Center: $Z \simeq$ $C_{2}^{3} \times C_{27360}$ $G/Z \simeq$ $C_1$
Commutator: $G' \simeq$ $C_1$ $G/G' \simeq$ $C_{2}^{3} \times C_{27360}$
Frattini: $\Phi \simeq$ $C_{48}$ $G/\Phi \simeq$ $C_{2}^{2} \times C_{1140}$
Fitting: $\operatorname{Fit} \simeq$ $C_{2}^{3} \times C_{27360}$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_{2}^{3} \times C_{27360}$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_{2}^{2} \times C_{1140}$ $G/S \simeq$ $C_{48}$
2-Sylow subgroup: $P_{2} \simeq$ $C_2^3\times C_{32}$
3-Sylow subgroup: $P_{3} \simeq$ $C_9$
5-Sylow subgroup: $P_{5} \simeq$ $C_5$
19-Sylow subgroup: $P_{19} \simeq$ $C_{19}$