Properties

Label ab/2.6.210
Order \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent \( 2 \cdot 3 \cdot 5 \cdot 7 \)
Abelian yes
$\card{\operatorname{Aut}(G)}$ \( 2^{10} \cdot 3^{3} \cdot 7 \)
Trans deg. $2520$
Rank $3$

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_{2} \times C_{6} \times C_{210}$
Order: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Automorphism group:Group of order \(193536\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 7 \)
Outer automorphisms:Group of order \(193536\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 7 \)
Nilpotency class:$1$
Derived length:$1$

This group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group). Whether it is metacyclic or rational has not been computed.

Group statistics

Order 1 2 3 5 6 7 10 14 15 21 30 35 42 70 105 210
Elements 1 7 8 4 56 6 28 42 32 48 224 24 336 168 192 1344 2520
Conjugacy classes   1 7 8 4 56 6 28 42 32 48 224 24 336 168 192 1344 2520
Divisions data not computed
Autjugacy classes data not computed

Dimension 1
Irr. complex chars.   2520 2520

Constructions

Rank: $3$
Inequivalent generating triples: not computed

Homology

Primary decomposition: $C_{2}^{3} \times C_{3}^{2} \times C_{5} \times C_{7}$

Subgroups

Center: $Z \simeq$ $C_{2} \times C_{6} \times C_{210}$ $G/Z \simeq$ $C_1$
Commutator: $G' \simeq$ $C_1$ $G/G' \simeq$ $C_{2} \times C_{6} \times C_{210}$
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_{2} \times C_{6} \times C_{210}$
Fitting: $\operatorname{Fit} \simeq$ $C_{2} \times C_{6} \times C_{210}$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_{2} \times C_{6} \times C_{210}$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_{2} \times C_{6} \times C_{210}$ $G/S \simeq$ $C_1$
2-Sylow subgroup: $P_{2} \simeq$ $C_2^3$
3-Sylow subgroup: $P_{3} \simeq$ $C_3^2$
5-Sylow subgroup: $P_{5} \simeq$ $C_5$
7-Sylow subgroup: $P_{7} \simeq$ $C_7$