Properties

Label ab/2.2.2.12.1092
Order \( 2^{7} \cdot 3^{2} \cdot 7 \cdot 13 \)
Exponent \( 2^{2} \cdot 3 \cdot 7 \cdot 13 \)
Abelian yes
$\card{\Aut(G)}$ \( 2^{27} \cdot 3^{5} \cdot 7 \)
Trans deg. $104832$
Rank $5$

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_{2}^{3} \times C_{12} \times C_{1092}$
Order: \(104832\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \cdot 13 \)
Exponent: \(1092\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 13 \)
Automorphism group:Group of order 228304355328
Nilpotency class:$1$
Derived length:$1$

This group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary). Whether it is metacyclic or rational has not been computed.

Group statistics

Order 1 2 3 4 6 7 12 13 14 21 26 28 39 42 52 78 84 91 156 182 273 364 546 1092
Elements 1 31 8 96 248 6 768 12 186 48 372 576 96 1488 1152 2976 4608 72 9216 2232 576 6912 17856 55296 104832
Conjugacy classes   1 31 8 96 248 6 768 12 186 48 372 576 96 1488 1152 2976 4608 72 9216 2232 576 6912 17856 55296 104832
Divisions data not computed
Autjugacy classes data not computed

Dimension 1
Irr. complex chars.   104832 104832

Constructions

Rank: $5$
Inequivalent generating 5-tuples: not computed

Homology

Primary decomposition: $C_{2}^{3} \times C_{4}^{2} \times C_{3}^{2} \times C_{7} \times C_{13}$

Subgroups

Center: $Z \simeq$ $C_{2}^{3} \times C_{12} \times C_{1092}$ $G/Z \simeq$ $C_1$
Commutator: $G' \simeq$ $C_1$ $G/G' \simeq$ $C_{2}^{3} \times C_{12} \times C_{1092}$
Frattini: $\Phi \simeq$ $C_2^2$ $G/\Phi \simeq$ $C_{2}^{2} \times C_{6552}$
Fitting: $\operatorname{Fit} \simeq$ $C_{2}^{3} \times C_{12} \times C_{1092}$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_{2}^{3} \times C_{12} \times C_{1092}$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_{2}^{2} \times C_{6552}$ $G/S \simeq$ $C_2^2$
2-Sylow subgroup: $P_{2} \simeq$ $C_2^3\times C_4^2$
3-Sylow subgroup: $P_{3} \simeq$ $C_3^2$
7-Sylow subgroup: $P_{7} \simeq$ $C_7$
13-Sylow subgroup: $P_{13} \simeq$ $C_{13}$