Learn more

Refine search


Results (1-50 of 225 matches)

Next   displayed columns for results

Elements of the group are displayed as matrices in $\GL_{2}(\F_{199})$.

Group Label Order Size Centralizer Powers Representative
2P 3P 11P
$C_{99}:D_4$ 1A $1$ $1$ $C_{99}:D_4$ 1A 1A 1A $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array}\right) $
$C_{99}:D_4$ 2A $2$ $1$ $C_{99}:D_4$ 1A 2A 2A $ \left(\begin{array}{rr} 198 & 0 \\ 0 & 198 \end{array}\right) $
$C_{99}:D_4$ 2B $2$ $2$ $C_2\times C_{198}$ 1A 2B 2B $ \left(\begin{array}{rr} 1 & 0 \\ 0 & 198 \end{array}\right) $
$C_{99}:D_4$ 2C $2$ $22$ $C_2\times C_{18}$ 1A 2C 2C $ \left(\begin{array}{rr} 0 & 125 \\ 121 & 0 \end{array}\right) $
$C_{99}:D_4$ 3A1 $3$ $1$ $C_{99}:D_4$ 3A-1 1A 3A-1 $ \left(\begin{array}{rr} 92 & 0 \\ 0 & 92 \end{array}\right) $
$C_{99}:D_4$ 3A-1 $3$ $1$ $C_{99}:D_4$ 3A1 1A 3A1 $ \left(\begin{array}{rr} 106 & 0 \\ 0 & 106 \end{array}\right) $
$C_{99}:D_4$ 4A $4$ $22$ $C_{36}$ 2A 4A 4A $ \left(\begin{array}{rr} 0 & 125 \\ 78 & 0 \end{array}\right) $
$C_{99}:D_4$ 6A1 $6$ $1$ $C_{99}:D_4$ 3A-1 2A 6A-1 $ \left(\begin{array}{rr} 107 & 0 \\ 0 & 107 \end{array}\right) $
$C_{99}:D_4$ 6A-1 $6$ $1$ $C_{99}:D_4$ 3A1 2A 6A1 $ \left(\begin{array}{rr} 93 & 0 \\ 0 & 93 \end{array}\right) $
$C_{99}:D_4$ 6B1 $6$ $2$ $C_2\times C_{198}$ 3A-1 2B 6B-1 $ \left(\begin{array}{rr} 92 & 0 \\ 0 & 107 \end{array}\right) $
$C_{99}:D_4$ 6B-1 $6$ $2$ $C_2\times C_{198}$ 3A1 2B 6B1 $ \left(\begin{array}{rr} 106 & 0 \\ 0 & 93 \end{array}\right) $
$C_{99}:D_4$ 6C1 $6$ $22$ $C_2\times C_{18}$ 3A1 2C 6C-1 $ \left(\begin{array}{rr} 0 & 116 \\ 90 & 0 \end{array}\right) $
$C_{99}:D_4$ 6C-1 $6$ $22$ $C_2\times C_{18}$ 3A-1 2C 6C1 $ \left(\begin{array}{rr} 0 & 157 \\ 187 & 0 \end{array}\right) $
$C_{99}:D_4$ 9A1 $9$ $1$ $C_{99}:D_4$ 9A2 3A1 9A-4 $ \left(\begin{array}{rr} 58 & 0 \\ 0 & 58 \end{array}\right) $
$C_{99}:D_4$ 9A-1 $9$ $1$ $C_{99}:D_4$ 9A-2 3A-1 9A4 $ \left(\begin{array}{rr} 175 & 0 \\ 0 & 175 \end{array}\right) $
$C_{99}:D_4$ 9A2 $9$ $1$ $C_{99}:D_4$ 9A4 3A-1 9A1 $ \left(\begin{array}{rr} 180 & 0 \\ 0 & 180 \end{array}\right) $
$C_{99}:D_4$ 9A-2 $9$ $1$ $C_{99}:D_4$ 9A-4 3A1 9A-1 $ \left(\begin{array}{rr} 178 & 0 \\ 0 & 178 \end{array}\right) $
$C_{99}:D_4$ 9A4 $9$ $1$ $C_{99}:D_4$ 9A-1 3A1 9A2 $ \left(\begin{array}{rr} 162 & 0 \\ 0 & 162 \end{array}\right) $
$C_{99}:D_4$ 9A-4 $9$ $1$ $C_{99}:D_4$ 9A1 3A-1 9A-2 $ \left(\begin{array}{rr} 43 & 0 \\ 0 & 43 \end{array}\right) $
$C_{99}:D_4$ 11A1 $11$ $2$ $C_2\times C_{198}$ 11A2 11A3 11A5 $ \left(\begin{array}{rr} 125 & 0 \\ 0 & 121 \end{array}\right) $
$C_{99}:D_4$ 11A2 $11$ $2$ $C_2\times C_{198}$ 11A4 11A5 11A1 $ \left(\begin{array}{rr} 103 & 0 \\ 0 & 114 \end{array}\right) $
$C_{99}:D_4$ 11A3 $11$ $2$ $C_2\times C_{198}$ 11A5 11A2 11A4 $ \left(\begin{array}{rr} 139 & 0 \\ 0 & 63 \end{array}\right) $
$C_{99}:D_4$ 11A4 $11$ $2$ $C_2\times C_{198}$ 11A3 11A1 11A2 $ \left(\begin{array}{rr} 62 & 0 \\ 0 & 61 \end{array}\right) $
$C_{99}:D_4$ 11A5 $11$ $2$ $C_2\times C_{198}$ 11A1 11A4 11A3 $ \left(\begin{array}{rr} 188 & 0 \\ 0 & 18 \end{array}\right) $
$C_{99}:D_4$ 12A1 $12$ $22$ $C_{36}$ 6A1 4A 12A-1 $ \left(\begin{array}{rr} 0 & 83 \\ 90 & 0 \end{array}\right) $
$C_{99}:D_4$ 12A-1 $12$ $22$ $C_{36}$ 6A-1 4A 12A1 $ \left(\begin{array}{rr} 0 & 157 \\ 12 & 0 \end{array}\right) $
$C_{99}:D_4$ 18A1 $18$ $1$ $C_{99}:D_4$ 9A2 6A1 18A5 $ \left(\begin{array}{rr} 141 & 0 \\ 0 & 141 \end{array}\right) $
$C_{99}:D_4$ 18A-1 $18$ $1$ $C_{99}:D_4$ 9A-2 6A-1 18A-5 $ \left(\begin{array}{rr} 24 & 0 \\ 0 & 24 \end{array}\right) $
$C_{99}:D_4$ 18A5 $18$ $1$ $C_{99}:D_4$ 9A1 6A-1 18A7 $ \left(\begin{array}{rr} 156 & 0 \\ 0 & 156 \end{array}\right) $
$C_{99}:D_4$ 18A-5 $18$ $1$ $C_{99}:D_4$ 9A-1 6A1 18A-7 $ \left(\begin{array}{rr} 37 & 0 \\ 0 & 37 \end{array}\right) $
$C_{99}:D_4$ 18A7 $18$ $1$ $C_{99}:D_4$ 9A-4 6A1 18A-1 $ \left(\begin{array}{rr} 21 & 0 \\ 0 & 21 \end{array}\right) $
$C_{99}:D_4$ 18A-7 $18$ $1$ $C_{99}:D_4$ 9A4 6A-1 18A1 $ \left(\begin{array}{rr} 19 & 0 \\ 0 & 19 \end{array}\right) $
$C_{99}:D_4$ 18B1 $18$ $2$ $C_2\times C_{198}$ 9A2 6B1 18B5 $ \left(\begin{array}{rr} 58 & 0 \\ 0 & 141 \end{array}\right) $
$C_{99}:D_4$ 18B-1 $18$ $2$ $C_2\times C_{198}$ 9A-2 6B-1 18B-5 $ \left(\begin{array}{rr} 175 & 0 \\ 0 & 24 \end{array}\right) $
$C_{99}:D_4$ 18B5 $18$ $2$ $C_2\times C_{198}$ 9A1 6B-1 18B7 $ \left(\begin{array}{rr} 43 & 0 \\ 0 & 156 \end{array}\right) $
$C_{99}:D_4$ 18B-5 $18$ $2$ $C_2\times C_{198}$ 9A-1 6B1 18B-7 $ \left(\begin{array}{rr} 162 & 0 \\ 0 & 37 \end{array}\right) $
$C_{99}:D_4$ 18B7 $18$ $2$ $C_2\times C_{198}$ 9A-4 6B1 18B-1 $ \left(\begin{array}{rr} 178 & 0 \\ 0 & 21 \end{array}\right) $
$C_{99}:D_4$ 18B-7 $18$ $2$ $C_2\times C_{198}$ 9A4 6B-1 18B1 $ \left(\begin{array}{rr} 180 & 0 \\ 0 & 19 \end{array}\right) $
$C_{99}:D_4$ 18C1 $18$ $22$ $C_2\times C_{18}$ 9A1 6C1 18C5 $ \left(\begin{array}{rr} 0 & 2 \\ 29 & 0 \end{array}\right) $
$C_{99}:D_4$ 18C-1 $18$ $22$ $C_2\times C_{18}$ 9A-1 6C-1 18C-5 $ \left(\begin{array}{rr} 0 & 9 \\ 130 & 0 \end{array}\right) $
$C_{99}:D_4$ 18C5 $18$ $22$ $C_2\times C_{18}$ 9A-4 6C-1 18C7 $ \left(\begin{array}{rr} 0 & 6 \\ 173 & 0 \end{array}\right) $
$C_{99}:D_4$ 18C-5 $18$ $22$ $C_2\times C_{18}$ 9A4 6C1 18C-7 $ \left(\begin{array}{rr} 0 & 3 \\ 54 & 0 \end{array}\right) $
$C_{99}:D_4$ 18C7 $18$ $22$ $C_2\times C_{18}$ 9A-2 6C1 18C-1 $ \left(\begin{array}{rr} 0 & 15 \\ 118 & 0 \end{array}\right) $
$C_{99}:D_4$ 18C-7 $18$ $22$ $C_2\times C_{18}$ 9A2 6C-1 18C1 $ \left(\begin{array}{rr} 0 & 4 \\ 45 & 0 \end{array}\right) $
$C_{99}:D_4$ 22A1 $22$ $2$ $C_2\times C_{198}$ 11A1 22A3 22A5 $ \left(\begin{array}{rr} 181 & 0 \\ 0 & 11 \end{array}\right) $
$C_{99}:D_4$ 22A3 $22$ $2$ $C_2\times C_{198}$ 11A3 22A9 22A7 $ \left(\begin{array}{rr} 138 & 0 \\ 0 & 137 \end{array}\right) $
$C_{99}:D_4$ 22A5 $22$ $2$ $C_2\times C_{198}$ 11A5 22A7 22A3 $ \left(\begin{array}{rr} 136 & 0 \\ 0 & 60 \end{array}\right) $
$C_{99}:D_4$ 22A7 $22$ $2$ $C_2\times C_{198}$ 11A4 22A1 22A9 $ \left(\begin{array}{rr} 85 & 0 \\ 0 & 96 \end{array}\right) $
$C_{99}:D_4$ 22A9 $22$ $2$ $C_2\times C_{198}$ 11A2 22A5 22A1 $ \left(\begin{array}{rr} 78 & 0 \\ 0 & 74 \end{array}\right) $
$C_{99}:D_4$ 22B1 $22$ $2$ $C_2\times C_{198}$ 11A4 22B3 22B5 $ \left(\begin{array}{rr} 114 & 0 \\ 0 & 96 \end{array}\right) $
Next   displayed columns for results